Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase.

نویسندگان

  • Kilian Stoecker
  • Bernd Bendinger
  • Björn Schöning
  • Per H Nielsen
  • Jeppe L Nielsen
  • Christian Baranyi
  • Elena R Toenshoff
  • Holger Daims
  • Michael Wagner
چکیده

135 years ago Ferdinand Cohn, the founder of bacteriology, microscopically observed a conspicuous filamentous bacterium with a complex life cycle and described it as Crenothrix polyspora. This uncultured bacterium is infamous for mass developments in drinking water systems, but its phylogeny and physiology remained unknown. We show that C. polyspora is a gammaproteobacterium closely related to methanotrophs and capable of oxidizing methane. We discovered that C. polyspora encodes a phylogenetically very unusual particulate methane monooxygenase whose expression is strongly increased in the presence of methane. Our findings demonstrate a previously unrecognized complexity of the evolutionary history and cell biology of methane-oxidizing bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the effect of fractures on unusual gas emission in coal mines; case study of Parvadeh coal mine, Iran

In the present study, an investigation was carried out on Parvadeh coal mine in Tabas, Iran, to survey the effect of fractures on unusual methane gas emission in coal mines. This coal mine was chosen for investigating because of its high methane gas content in the coal body and available data from sensors in desired locations. Gas concentration monitoring programs were carried out at the mine s...

متن کامل

Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26.

Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C(1) to C(8)), substituted alkanes, branched-chain alkanes, carbon monoxide, e...

متن کامل

Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform.

A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the M...

متن کامل

Substrate Specificity of Soluble Methane Monooxygenase

ion or by sequential loss of a *-bond electron and a proton termed an aborted epoxidation by Ortiz de Montellano (1986) and indeed epoxidated products are generated by methane monooxygenase from these substrates (Table 111). Oxidation of Cyclopropylbenzem-Attaching a cyclopropyl ring to the hydroxylated carbon atom of a hydrocarbon substrate as a means of testing for the presence of carbon radi...

متن کامل

Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph

Methanotrophs are a specialized group of bacteria that can utilize methane (CH₄) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 7  شماره 

صفحات  -

تاریخ انتشار 2006